TensorFlow TensorBoard 使用 发表于 2017-11-03 | 分类于 tensorflow TensorBoard示例程序 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataSUMMARY_DIR = "log"BATCH_SIZE = 100TRAIN_STEPS = 10000HIDDEN1_SIZE = 500def variable_summary(var, name): with tf.name_scope("summaries"): tf.summary.histogram(name, var) mean = tf.reduce_mean(var) tf.summary.scalar("mean/" + name, mean) stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar("stddev/" + name, stddev)def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): with tf.name_scope(layer_name): with tf.name_scope("weights"): weights = tf.Variable(tf.truncated_normal( [input_dim, output_dim], stddev=0.1)) variable_summary(weights, layer_name + "/weights") with tf.name_scope("biases"): biases = tf.Variable(tf.constant(0.1, shape=[output_dim])) variable_summary(biases, layer_name + "/biases") with tf.name_scope("Wx_plus_b"): preactivate = tf.matmul(input_tensor, weights) + biases tf.summary.histogram(layer_name + "/pre_activation", preactivate) activate = act(preactivate, name="activation") tf.summary.histogram(layer_name + "/activation", activate) return activatedef main(_): mnist = input_data.read_data_sets("MNIST_data", one_hot=True) with tf.name_scope("input"): x = tf.placeholder(tf.float32, [None, 784], name="x-input") y_ = tf.placeholder(tf.float32, [None, 10], name="y-input") with tf.name_scope("input_reshape"): image_shaped_input = tf.reshape( x, [-1, 28, 28, 1], name="x-input-reshpe") tf.summary.image("input", image_shaped_input) hidden1 = nn_layer(x, 784, HIDDEN1_SIZE, "layer1") y = nn_layer(hidden1, HIDDEN1_SIZE, 10, "layer2", act=tf.identity) with tf.name_scope("cross_entropy"): cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) tf.summary.scalar("cross entropy", cross_entropy) with tf.name_scope("train"): train_step = tf.train.AdamOptimizer().minimize(cross_entropy) with tf.name_scope("accuracy"): with tf.name_scope("correct_prediction"): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope("accuracy"): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar("accuracy", accuracy) merged = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph) sess.run(tf.global_variables_initializer()) for i in range(TRAIN_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys}) summary_writer.add_summary(summary, i) summary_writer.close()if __name__ == '__main__': tf.app.run()