Python小游戏,使用Tensorflow进行训练

Reference

使用python3.5运行

依赖库

pygame
opencv-python
tensorflow

容器中运行

1
2
3
4
5
6
7
nvidia-docker run -ti  \
--name liqiang_test \
-v /etc/localtime:/etc/localtime:ro \
--net=host \
-e DISPLAY=:12.0 \
-v $HOME/.Xauthority:/root/.Xauthority \
tensorflow:1.0.1-gpu-py3 bash

单机运行代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#coding=utf-8

import pygame
from pygame.locals import *
import sys

BLACK = (0 ,0 ,0 )
WHITE = (255,255,255)

SCREEN_SIZE = [320,400]
BAR_SIZE = [20, 5]
BALL_SIZE = [15, 15]

class Game(object):
def __init__(self):
pygame.init()
self.clock = pygame.time.Clock()
self.screen = pygame.display.set_mode(SCREEN_SIZE)
pygame.display.set_caption('Simple Game')

self.ball_pos_x = SCREEN_SIZE[0]//2 - BALL_SIZE[0]/2
self.ball_pos_y = SCREEN_SIZE[1]//2 - BALL_SIZE[1]/2
# ball移动方向
self.ball_dir_x = -1 # -1 = left 1 = right
self.ball_dir_y = -1 # -1 = up 1 = down
self.ball_pos = pygame.Rect(self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1])

self.score = 0
self.bar_pos_x = SCREEN_SIZE[0]//2-BAR_SIZE[0]//2
self.bar_pos = pygame.Rect(self.bar_pos_x, SCREEN_SIZE[1]-BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1])

def bar_move_left(self):
self.bar_pos_x = self.bar_pos_x - 2
def bar_move_right(self):
self.bar_pos_x = self.bar_pos_x + 2

def run(self):
pygame.mouse.set_visible(0) # make cursor invisible

bar_move_left = False
bar_move_right = False
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
elif event.type == pygame.MOUSEBUTTONDOWN and event.button == 1: # 鼠标左键按下(左移)
bar_move_left = True
elif event.type == pygame.MOUSEBUTTONUP and event.button == 1: # 鼠标左键释放
bar_move_left = False
elif event.type == pygame.MOUSEBUTTONDOWN and event.button == 3: #右键
bar_move_right = True
elif event.type == pygame.MOUSEBUTTONUP and event.button == 3:
bar_move_right = False

if bar_move_left == True and bar_move_right == False:
self.bar_move_left()
if bar_move_left == False and bar_move_right == True:
self.bar_move_right()

self.screen.fill(BLACK)
self.bar_pos.left = self.bar_pos_x
pygame.draw.rect(self.screen, WHITE, self.bar_pos)

self.ball_pos.left += self.ball_dir_x * 2
self.ball_pos.bottom += self.ball_dir_y * 3
pygame.draw.rect(self.screen, WHITE, self.ball_pos)

if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1]+1):
self.ball_dir_y = self.ball_dir_y * -1
if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
self.ball_dir_x = self.ball_dir_x * -1


if self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
self.score += 1
print("Score: ", self.score, end='\r')
elif self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
print("Game Over: ", self.score)
return self.score

pygame.display.update()
self.clock.tick(60)

game = Game()
game.run()

训练代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#coding=utf-8

import pygame
import random
from pygame.locals import *
import numpy as np
from collections import deque
import tensorflow as tf # http://blog.topspeedsnail.com/archives/10116
import cv2 # http://blog.topspeedsnail.com/archives/4755

BLACK = (0 ,0 ,0 )
WHITE = (255,255,255)

SCREEN_SIZE = [320,400]
BAR_SIZE = [50, 5]
BALL_SIZE = [15, 15]

# 神经网络的输出
MOVE_STAY = [1, 0, 0]
MOVE_LEFT = [0, 1, 0]
MOVE_RIGHT = [0, 0, 1]

class Game(object):
def __init__(self):
pygame.init()
self.clock = pygame.time.Clock()
self.screen = pygame.display.set_mode(SCREEN_SIZE)
pygame.display.set_caption('Simple Game')

self.ball_pos_x = SCREEN_SIZE[0]//2 - BALL_SIZE[0]/2
self.ball_pos_y = SCREEN_SIZE[1]//2 - BALL_SIZE[1]/2

self.ball_dir_x = -1 # -1 = left 1 = right
self.ball_dir_y = -1 # -1 = up 1 = down
self.ball_pos = pygame.Rect(self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1])

self.bar_pos_x = SCREEN_SIZE[0]//2-BAR_SIZE[0]//2
self.bar_pos = pygame.Rect(self.bar_pos_x, SCREEN_SIZE[1]-BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1])

# action是MOVE_STAY、MOVE_LEFT、MOVE_RIGHT
# ai控制棒子左右移动;返回游戏界面像素数和对应的奖励。(像素->奖励->强化棒子往奖励高的方向移动)
def step(self, action):

if action == MOVE_LEFT:
self.bar_pos_x = self.bar_pos_x - 2
elif action == MOVE_RIGHT:
self.bar_pos_x = self.bar_pos_x + 2
else:
pass
if self.bar_pos_x < 0:
self.bar_pos_x = 0
if self.bar_pos_x > SCREEN_SIZE[0] - BAR_SIZE[0]:
self.bar_pos_x = SCREEN_SIZE[0] - BAR_SIZE[0]

self.screen.fill(BLACK)
self.bar_pos.left = self.bar_pos_x
pygame.draw.rect(self.screen, WHITE, self.bar_pos)

self.ball_pos.left += self.ball_dir_x * 2
self.ball_pos.bottom += self.ball_dir_y * 3
pygame.draw.rect(self.screen, WHITE, self.ball_pos)

if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1]+1):
self.ball_dir_y = self.ball_dir_y * -1
if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
self.ball_dir_x = self.ball_dir_x * -1

reward = 0
if self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
reward = 1 # 击中奖励
elif self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
reward = -1 # 没击中惩罚

# 获得游戏界面像素
screen_image = pygame.surfarray.array3d(pygame.display.get_surface())
pygame.display.update()
# 返回游戏界面像素和对应的奖励
return reward, screen_image

# learning_rate
LEARNING_RATE = 0.99
# 更新梯度
INITIAL_EPSILON = 1.0
FINAL_EPSILON = 0.05
# 测试观测次数
EXPLORE = 500000
OBSERVE = 50000
# 存储过往经验大小
REPLAY_MEMORY = 500000

BATCH = 100

output = 3 # 输出层神经元数。代表3种操作-MOVE_STAY:[1, 0, 0] MOVE_LEFT:[0, 1, 0] MOVE_RIGHT:[0, 0, 1]
input_image = tf.placeholder("float", [None, 80, 100, 4]) # 游戏像素
action = tf.placeholder("float", [None, output]) # 操作

# 定义CNN-卷积神经网络 参考:http://blog.topspeedsnail.com/archives/10451
def convolutional_neural_network(input_image):
weights = {'w_conv1':tf.Variable(tf.zeros([8, 8, 4, 32])),
'w_conv2':tf.Variable(tf.zeros([4, 4, 32, 64])),
'w_conv3':tf.Variable(tf.zeros([3, 3, 64, 64])),
'w_fc4':tf.Variable(tf.zeros([3456, 784])),
'w_out':tf.Variable(tf.zeros([784, output]))}

biases = {'b_conv1':tf.Variable(tf.zeros([32])),
'b_conv2':tf.Variable(tf.zeros([64])),
'b_conv3':tf.Variable(tf.zeros([64])),
'b_fc4':tf.Variable(tf.zeros([784])),
'b_out':tf.Variable(tf.zeros([output]))}

conv1 = tf.nn.relu(tf.nn.conv2d(input_image, weights['w_conv1'], strides = [1, 4, 4, 1], padding = "VALID") + biases['b_conv1'])
conv2 = tf.nn.relu(tf.nn.conv2d(conv1, weights['w_conv2'], strides = [1, 2, 2, 1], padding = "VALID") + biases['b_conv2'])
conv3 = tf.nn.relu(tf.nn.conv2d(conv2, weights['w_conv3'], strides = [1, 1, 1, 1], padding = "VALID") + biases['b_conv3'])
conv3_flat = tf.reshape(conv3, [-1, 3456])
fc4 = tf.nn.relu(tf.matmul(conv3_flat, weights['w_fc4']) + biases['b_fc4'])

output_layer = tf.matmul(fc4, weights['w_out']) + biases['b_out']
return output_layer

# 深度强化学习入门: https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
# 训练神经网络
def train_neural_network(input_image):
predict_action = convolutional_neural_network(input_image)

argmax = tf.placeholder("float", [None, output])
gt = tf.placeholder("float", [None])

action = tf.reduce_sum(tf.multiply(predict_action, argmax), reduction_indices = 1)
cost = tf.reduce_mean(tf.square(action - gt))
optimizer = tf.train.AdamOptimizer(1e-6).minimize(cost)

game = Game()
D = deque()

_, image = game.step(MOVE_STAY)
# 转换为灰度值
image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
# 转换为二值
ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
input_image_data = np.stack((image, image, image, image), axis = 2)

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())

saver = tf.train.Saver()

n = 0
epsilon = INITIAL_EPSILON
while True:
action_t = predict_action.eval(feed_dict = {input_image : [input_image_data]})[0]

argmax_t = np.zeros([output], dtype=np.int)
if(random.random() <= INITIAL_EPSILON):
maxIndex = random.randrange(output)
else:
maxIndex = np.argmax(action_t)
argmax_t[maxIndex] = 1
if epsilon > FINAL_EPSILON:
epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE

#for event in pygame.event.get(): macOS需要事件循环,否则白屏
# if event.type == QUIT:
# pygame.quit()
# sys.exit()
reward, image = game.step(list(argmax_t))

image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
image = np.reshape(image, (80, 100, 1))
input_image_data1 = np.append(image, input_image_data[:, :, 0:3], axis = 2)

D.append((input_image_data, argmax_t, reward, input_image_data1))

if len(D) > REPLAY_MEMORY:
D.popleft()

if n > OBSERVE:
minibatch = random.sample(D, BATCH)
input_image_data_batch = [d[0] for d in minibatch]
argmax_batch = [d[1] for d in minibatch]
reward_batch = [d[2] for d in minibatch]
input_image_data1_batch = [d[3] for d in minibatch]

gt_batch = []

out_batch = predict_action.eval(feed_dict = {input_image : input_image_data1_batch})

for i in range(0, len(minibatch)):
gt_batch.append(reward_batch[i] + LEARNING_RATE * np.max(out_batch[i]))

optimizer.run(feed_dict = {gt : gt_batch, argmax : argmax_batch, input_image : input_image_data_batch})

input_image_data = input_image_data1
n = n+1

if n % 10000 == 0:
saver.save(sess, 'game.cpk', global_step = n) # 保存模型

print(n, "epsilon:", epsilon, " " ,"action:", maxIndex, " " ,"reward:", reward)


train_neural_network(input_image)